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Introduction and Abstract 
A three story, three degree-of-freedom, model structure with a floor width to height ratio of 
approximately 3:2, shown in Figure 1, was excited with two types of repetitive horizontal 
motion. One was produced by a programmable shake table—shown supporting the 
structure in Figure 1a—and produced a reasonably sinusoidal input displacement pulse. 
The other was produced with an electric motor rotating a mechanical eccentric cam, shown 
in Figure 1b. While the excitation displacement lf the motor-cam system was far from 
sinusoidal, it was able to produce sinusoidal structure response because of its repetitively 
uniform nature. The motor and cam’s input frequency was manipulated to excite the model 
at its first, second, and third modes of response. The shake table’s input frequency was 
controlled to excite the model at frequencies deviating 2.5, 5, and 10 % from the natural or 
fundamental frequency. The shake table produced a more controllable and more perfectly 
sinusoidal excitation motion. The shake table was only capable of excitation motions of up 
to 5 Hz, and thus the motor-cam system was employed to observe model response at it 
higher modes of response at 5.55 and 8.33 Hz.  

This paper compares horizontal velocity and displacement responses measured with 
velocity transducers (geophones, shown in Figure 1) with theoretical displacement 
response as well as the shape of the theoretically expected deflected floor displacements at 
the first, second, and third modes of response. In addition, this paper describes use of 
velocity transducers to measure response at frequencies below their linear range as well as 
challenges of comparing mathematical theory to actual measurements for a small number 
of sinusoidal excitation pulses. Finally, suggestions are given for future use of this model 
system and shake table for measurement of column strains and excitation at higher 
frequencies and transient pulses. 

Equipment and Instruments 
The apparatus has two configurations shown in Figure 1a and 1b. Both consist of three 
main components: a model structure, a device to excite the model, and velocity transducers 
to capture the model’s motion. For structural excitation, a shake table and an electric 
motor-cam system were used, shown in Figure 1a and 1b, respectively.  



The model structure features all-metal construction with thin, flexible walls and thick, 
relatively more massive floors. Approximately 21 cm separate each floor, and floors are 30 
cm wide. With three floors above ground level, this model acts as a three degree-of-
freedom system with three masses of the same weight at each floor.  

  
Figure 1a: The testing apparatus consisting of the 
model structure, input device (here the Shake Table 
II), and recording devices (velocity transducers 
recorded by voltage sensors). 

Figure 1b: The alternative apparatus configuration 
using a motor and cam system to excite the model 
structure. 

In the first configuration, structural excitation was provided by the Quanser Shake Table II, 
shown in Figure 1a. According to Quanser, this shake table is rated to drive a 7.5 kg load at 
2.5 g and has a maximum displacement of ± 7.62 cm (Quanser, 2017), far above 
requirements necessary for this research. Power and feedback controllers—along with 
manufacturer provided control software—direct the shake table’s movements. This 
software provides amplitude and frequency control of a sinusoidal time-displacement 
function used to excite the model structure. For this configuration, the model was screwed 
to a wooden platform, allowing it to be clamped securely to the shake table. 

Structural excitation was provided by a motor-cam system—shown in Figure 1b—in the 
second configuration. The motor used was a Bodine Electric Company Series 500 Control 
Motor. In this configuration, the model structure was screwed to a metal base plate and 
able to move laterally with little friction. Motor rotation about a horizontal axis was 
transferred through two conical gears to an eccentric cam rotating about a vertical axis. 
Rotation of this eccentric cam produced horizontal excitation at the base of the structure. A 
motor controller was used to adjust the frequency of base excitation. 



Input excitation and structural response was captured with Geospace Technologies HS-1 
geophones (velocity transducers). These sensors produce an analog voltage related directly 
to their excitation velocity. Pasco wireless voltage sensors measured the transducer’s 
analog voltage signal and relayed it digitally to Pasco’s Capstone software to record voltage 
time histories. Voltage data were then converted to units of velocity after special 
calibration described below. 

Velocity Transducer Calibration Process 
Conversion from velocity transducer output voltage to units of velocity is dependent on the 
excitation frequency experienced by the transducer. The manufacturer provided 
conversion chart (upper right portion of Figure 2) displays nonlinear response below 20 Hz 
and does not extend below 5 Hz. Because the first three excitation modes of the structure 
(1.91, 5.55, and 8.33 Hz) occur below the flat response region, and the fundamental mode 
frequency (1.91 Hz) does not appear on the manufacturer conversion chart, it was 
necessary to manually calibrate voltage-to-velocity conversion rates. These calibrated 
conversion rates are labeled in Figure 2 for the first three excitation modes.  

Accurate conversion rates make it possible to calculate true velocity and displacement data. 
Conversion rates calculated during this research deviated from the manufacturer 
calibration chart. The dashed red line in Figure 2 is an extension of the manufacturer 
provided curve—assuming it continues linearly. Calibrated conversion rates for each of the 
three excitation modes lie above the manufacturer curve. Furthermore, while these points 
are not consistent with manufacturer expectations, they follow a linear relationship. 

Velocity transducers were calibrated through a multistep process. First the structure’s 
fundamental frequency was found. To do so, an assumption was made: maximum 
structural response occurs when base input frequency matches the structure’s 
fundamental frequency. Therefore, by trial and error, base input frequency was adjusted, 
searching for maximum structural response. Once this frequency was found, it was 
considered the structure’s fundamental frequency. Structural response was observed by 
monitoring output voltage amplitude—no conversion factor necessary since velocity varies 
directly with output voltage.  

The next step of calibration was recoding structural excitation at its fundamental frequency 
independent of the velocity transducers by visually measuring the displacement.  First, a 
ruler was placed behind the top floor, as shown in Figure 3. Then the structure was excited 
with a base input frequency equal to its calculated fundamental frequency, and voltage 
time histories were recorded. When the top floor transducer’s output voltage amplitude 
reached a steady maximum, a video of the top floor moving relative to the ruler was 
recorded to measure displacement at the top floor. 



Figure 2: The upper right portion of the velocity transducer conversion chart is taken 
directly from the velocity transducer manufacturer (HS-1). On the lower left in red is 
a theoretical linear extension of the manufacturer given conversion chart. The three 
points—f1, f2, and f3—represent conversion rates calculated during testing at the 
structure’s first, second, and third excitation modes, respectively. 

Figure 3: A ruler positioned behind the top floor determined 
maximum displacement during excitation. This displacement 
was then used to manually calculate the velocity transducer 
conversion rate. 

The last step of velocity transducer calibration was data analysis. Video of the shaking 
structure provided the maximum displacement during steady-state fundamental frequency 
excitation. Using Figure 2, an initial voltage-to-velocity conversion rate was selected to 
calculate velocity, which was subsequently integrated to calculate displacements (example 
time histories shown in Figure 4). Amplitude of this displacement at steady-state was then 



compared to maximum displacement found from video analysis. To find the correct 
conversion rate, the voltage-to-velocity conversion rate was adjusted manually until 
displacements calculated from velocities matched those from video analysis. This final 
conversion rate was considered the true, calibrated conversion rate and was used for the 
rest of analysis. To calculate the voltage-to-velocity conversion rates for the second and 
third mode frequencies, this process was repeated. 

Shake Table Base Input Velocity and Displacement Limitations 
Though the Shake Table II is a well-developed instrument useful for applications in 
engineering research, physical limitations mean the system will never produce perfect 
movements like those assumed in mathematical models. In particular, the shake table’s 
displacement is not purely sinusoidal and takes a non-negligible amount of time to reach 
steady-state. Examples of input velocity and displacement time histories are shown in 
Figure 4a and 4b.  

Input velocity, shown in Figure 4a, is obviously not a clean sinusoidal function; however, a 
50-period moving average (equating to 0.1 seconds at a recording rate of 500 Hz) 
illustrates the velocity is nearly sinusoidal on average. Shown in Figure 4b, input 
displacement is more sinusoidal than velocity but still not perfectly sinusoidal. 
Nevertheless, structural response at the top floor—velocity and displacement shown in 
Figures 4c and 4d, respectively—is sinusoidal. Thus, because the structural response was 
sinusoidal as expected, the imperfect base input displacement was deemed acceptable for 
this research. 

Velocity and displacement of the shake table also cannot reach steady-state amplitudes 
instantaneously: a short period of “initiation” time is necessary to allow the system to reach 
the required frequency starting from a fixed position (or “zero” frequency). The black box 
in Figure 4b outlines this time of system “initiation.” Because pulses from the shake table 
do not begin at steady-state amplitude, it is difficult to determine which is the “first” pulse 
exciting the structure. For the purposes of this paper, the first excitation pulse refers to the 
first input pulse reaching steady-state amplitude.  

Motor-Cam Base Input Velocity and Displacement Limitations 
The motor and cam system configuration is a rather simple mechanical system—less the 
electric motor, of course. However, like the shake table, input displacements produced by 
the motor and cam are not purely sinusoidal. Examples of input velocity and displacement 
time histories are shown in Figure 5a and 5b.  

Another limitation of the motor and cam system is consistency of excitation frequency. 
Unfortunately, the motor cannot reliably produce the same driving frequency by setting the 
motor control to a known position; input frequency is only accurately known at steady 
state when structural response is at a maximum. Therefore, increasing response to 



excitation pulses cannot be measured with the motor and cam system: only steady-state 
excitation is possible. 

Input velocity, shown in Figure 5a, is certainly not a clean sinusoidal function; even a 50-
period moving average (equating to 0.1 seconds at a recording rate of 500 Hz) does not 
help the input appear much more sinusoidal. Input displacement, shown in Figure 5b, is 
more sinusoidal than velocity; however, it is still not perfectly sinusoidal. It also does not 
have a constant average value but instead “wanders” up and down in amplitude. Even so, 
structural response at the top level—velocity and displacement shown in Figures 5c and 
5d, respectively—is sinusoidal. However, like with the shake table, structural response was 
sinusoidal as anticipated, therefore this imperfect base input displacement was considered 
acceptable. 

 



Figure 4: Example of the velocity and displacement time histories—recorded at the 
fundamental mode of the model structure with the shake table as the driving device. 
While the input velocity is noisy, the input displacement is cleaner, and the top floor 
velocity and displacement appear to be much cleaner sinusoidal responses. The black 
box highlights time needed for base input to “initiate” itself to steady state amplitude.  



Figure 5: Example of the velocity and displacement time histories—recorded at the 
fundamental mode of the model structure with the motor and cam system as the 
driving device. Input velocity and displacement are very noisy, but the top floor 
velocity and displacement appear to be much cleaner sinusoidal responses. Fifty 
period moving averages demonstrate the periodic nature of input excitation.   



Model Structure Excitation Mode Frequencies 
Fundamental (first), second, etc. modes of structural response can be estimated for any 
body or structure. For example, a continuous body of soil with distributed mass has 
multiple modes of shear response described by Equation 1.   

𝜔𝜔𝑛𝑛 = 𝜈𝜈𝑠𝑠
𝐻𝐻
�𝜋𝜋
2

+ (𝑛𝑛 − 1)𝜋𝜋�                                                    (1) 

Here, 𝜈𝜈𝑠𝑠 is the shear wave velocity, 𝐻𝐻 is the height of the soil deposit, and 𝑛𝑛 = 1, 2, 3, … is 
the mode number (Kramer, 1996). Thus, the first three mode frequencies are  

𝜔𝜔1 = 𝜋𝜋𝜈𝜈𝑠𝑠
2𝐻𝐻

 for the fundamental (first mode), 

𝜔𝜔2 = 𝜋𝜋𝜈𝜈𝑠𝑠
2𝐻𝐻

+ 𝜈𝜈𝑠𝑠𝜋𝜋
𝐻𝐻

= 3𝜔𝜔1 for the second mode, 

and 𝜔𝜔3 = 𝜋𝜋𝜈𝜈𝑠𝑠
2𝐻𝐻

+ 2𝜈𝜈𝑠𝑠𝜋𝜋
𝐻𝐻

= 5𝜔𝜔1 for the third mode. 

Similarly, a lumped body system like a multilevel structure also has multiple modes of 
horizontal (or shear) response. For instance, Mncwango (1990) used Equation (2) for 
multiple modes of response for an 𝑁𝑁 degree-of-freedom system, that is, a structure with 𝑁𝑁 
floor levels. 

𝜔𝜔𝑗𝑗 = 2�𝑘𝑘
𝑚𝑚

sin �(2𝑗𝑗−1)𝜋𝜋
2(2𝑁𝑁+1)�                                                    (2) 

In this equation, 𝑗𝑗 = 1, 2, 3, … is the mode number, 𝑚𝑚 is the mass, and 𝑘𝑘 is the stiffness. 
Using structural properties of 𝑚𝑚 = 118.8 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑘𝑘 = 109.389 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑘𝑘𝑛𝑛, the model 
frequencies were 𝜔𝜔1 = 18.8486,𝜔𝜔2 = 52.8212, and 𝜔𝜔3 = 76.3302. Thus, 𝜔𝜔2 = 2.8𝜔𝜔1, and 
𝜔𝜔3 = 4.0𝜔𝜔1. 

Using the method described in the velocity transducer calibration process section, the first 
three excitation mode frequencies of the structural model were found experimentally. 
Because the shake table’s control software limits sinusoidal frequency to 5 Hz (below the 
second and third mode frequencies), the motor and cam system was used to determine the 
second and third excitation mode frequencies, shown in Table 1.  

Frequency 
[Hz] 

Model 
Structure 

f1 1.91 
f2 5.55 
f3 8.33 

Table 1: theoretical excitation mode 
frequencies for the model structure.  



The ratio of second and third mode excitation mode frequencies to their corresponding 
fundamental mode frequency are shown in Table 2 for each theoretical and experimental 
system. Experimental results from the model structure are right between the two 
theoretical predictions. Because the model structure behaves somewhere between a 
distributed and lumped mass system, these results are reasonable and provide evidence 
these experimental results are indeed accurate.  

Frequency 
[Hz] 

Distributed 
Mass 

Lumped 
Mass System 

Model 
Structure 

f2/f1 3.0 2.8 2.9 
f3/f1 5.0 4.0 4.4 

Table 2: Ratios of second and third excitation mode frequencies to their 
corresponding fundamental mode frequency for distributed mass (soil) 
systems, lumped mass (multilevel structure) systems, and the model 
structure. 

Model Structure Damping 
No structure is undamped: critical damping of an oscillating structure is calculated from 
the decay of free oscillation of the structure. After an initial excitation—say, from the push 
of a finger for a model structure—the resulting declining velocity amplitudes provide data 
necessary to calculate the system’s damping factor, 𝛽𝛽, from Equation 2 (Dowding, 2000). 
Here, 𝑢𝑢𝑛𝑛 and 𝑢𝑢𝑛𝑛+1 are consecutive velocity amplitudes.  

𝛽𝛽 = 1
2𝜋𝜋
�− ln �𝑢𝑢𝑛𝑛+1

𝑢𝑢𝑛𝑛
��                                                  (2) 

Figure 5 illustrates the decay in velocity during free oscillation of the model structure. The 
damping factor was calculated to be 𝛽𝛽 ≈ 2 % indicating a relatively undamped structure.  

 
Figure 5: Top floor velocity time history during damping factor, 𝛽𝛽, calculation test showing the decay of free 
oscillation. The velocity amplitudes are used to calculate the damping factor of the structure. 



Structural Response to Increasing Numbers of Constant Amplitude 
Excitation Pulses 
Continued exposure to base motion produces increasing structural response. Figure 6 
illustrates this increasing response amplitude for both measurement of model response 
(experimental) and mathematical calculation (theoretical). With damping at 2 %, 
experimental and theoretical results for base input at the fundamental frequency are 
remarkably similar—both increase to just under a dynamic amplification factor (DAF) of 
20 at 12 pulses.  

The rigorous definition of the DAF is observed displacement induced by the peak of the 
exciting force divided by static displacement. However, since the exciting force is not 
known, the displacement observed after one pulse has been employed as the equivalent 
static displacement. Measured DAF was obtained by dividing the displacement after each 
pulse by the first pulse and them multiplying by the DAF for one pulse found in 
Mncwango’s thesis.  

 
Figure 6: Structural response to increasing number of excitation pulses—calculated and theoretical 
(Mncwango, 1990) values. Input frequencies of 10, 5, and 2.5 % over and under the fundamental frequency are 
shown in addition to the fundamental frequency for the calculated chart. 

Experimental response to continuous excitation pulses at the structure’s fundamental 
mode was remarkably similar to Mncwango’s mathematical theorization. Thus, the 
mathematical model confirms the validity of this experimental model. 

The experimental plot in Figure 6 also displays structural response for input frequencies 
deviating from the fundamental frequency. If the base input frequency matches the 
structure’s fundamental frequency exactly, structural response will increase asymptotically 
to steady state excitation. However, if the base input frequency deviates from the 
fundamental frequency, structural response experiences oscillating amplitude over time, 
whose maximum is less than at the fundamental frequency. An example is shown in Figure 
7; here, input frequency was 10 % above the fundamental. Oscillation occurs as base input 
and structural response move in and out of phase. While structural response is increasing, 



base excitation closely coincides with structural response. Structural response declines as 
the excitation pulse opposes structural response. 

 
Figure 7: Input frequencies deviating from the fundamental frequency—in this case, 10 % over—
demonstrated periodic response cycles. 

Maximum Structural Response During Excitation 
Inter-story drift for each excitation mode is shown in Figure 8 and 9. Displacement at each 
story is normalized to the largest displacement at that excitation frequency in Figure 8. 
This method illustrates the relative displacement between each story but exaggerates the 
actual displaced shapes when comparing excitation modes. Contrarily, in Figure 9, 
displacement at each story is normalized to the largest displacement at any of the three 
excitation frequencies (occurring at the top floor at the fundamental frequency). This 
method illustrates relative deflection curves for each excitation mode, allowing excitation 
mode displacements to be compared with one another.  

Actual maximum displacements after 12 pulses at the fundamental mode for experimental 
and theoretical models were 2.0 cm and 16.9 cm respectively. The maximum theoretical 
displacements are far larger because the theory modeled a full-scale, real structure while 
experimental displacements were for a 0.6 m tall model. However, while actual deflections 
differ, the shape of their relative displacements can still be compared to validate 
achievement of second and third mode response for the model.  

In both Figure 8 and 9, Mncwango’s mathematical results are also shown beside their 
corresponding experimental results. The deflected shape from experimental measurements 
and Mncwango’s theoretical calculations showed similarities. At each excitation mode, each 
approach found the same floor level with maximum displacement and also had the same 
general deflected shape.  

There were differences between experimental and theoretical calculations, however. For 
example, as shown in Figure 9, experimental relative displacement between stories 



deviated from theory more for the higher modes, the second and third. Possible sources for 
this error include differences between the experimental and theoretical structures’ wall 
stiffness values, floor height to width ratios, and support conditions.  

 

 
Figure 8: Theoretical (top) (Mncwango, 1990) and calculated displacement (bottom) at each floor normalized 
to the largest displacement of the three floors. These plots show the structure’s deflected shape during 
excitation at the first three modes. 



 
Figure 9: Comparison of experimental and theoretical (Mncwango, 1990) deflection during first, second, and 
third mode excitation. Note that the magnitude of deflection decreases with increasing frequency.  

  



Finally, deflection shape details produced at the fundamental frequency is captured 
visually in Figure 10. This photo confirms the deflected shape found theoretically and 
experimentally through velocity integration. Furthermore, the shape of the model’s walls 
during horizontal model defection indicates a tendency toward fixed-fixed support 
conditions between floors. 

Figure 10: A photograph of the structure’s 
deflected shape during fundamental 
frequency excitation. The columns exhibit 
fixed-fixed support behavior.   

Conclusions and Recommendations for Further Research 
Comparison of theoretical results from Mncwango’s mathematical building model and 
experimental measurements of the response of a model structure tested the validity of the 
experimental model. Results from this experiment closely paralleled Mncwango’s 
mathematical approach. Therefore, this model structure may indeed be a reliable 
approximation of structural behavior. 

Inter-story wall deflection for this model structure tended toward a fixed-fixed support 
condition. For future research, strain gages may be added to the walls. Strain from these 
gages could then be compared to theoretical strain calculated from inter-story drift and 
this fixed-fixed support assumption. 



Because the shake table is more convenient to operate than the motor and cam and 
provides more predictable results, utilizing the correct software to excite the structure at 
higher modes would be beneficial for reproducing these experiments. Additionally, 
programming the shake table to excite the structure with a transient (i.e. noncontinuous) 
pulse would facilitate investigation of structural response to a fixed number of pulses 
instead of continuous motion, as well as odd shaped single transients similar to those 
produced blasting and construction.  
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